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Abstract  

Some considerations on the existence of nonlinear reversible dynamical evolutions for 
isolated quantum systems are developed within the Hilbert model with the aid of  the 
superposition principle and the law of entropy. 

1. Introduction 

In this note the problem of the existence of nonlinear reversible dynamical 
evolutions for isolated quantum systems is investigated. To this end a definition 
of the superposition principle in a unified form is employed. More precisely, 
the dynamics is introduced by means of a continuous one-parameter group 
of permutations of the statistical operators of the system preserving the unified 
superposition (dynamical group). A corresponding Heisenberg picture is defined. 
Dynamical groups that give rise to the same Heisenberg picture are called 
equivalent. Using standard results a simple condition is shown to be sufficient 
in order to have a dynamical group equivalent to a unitary one. 

The main result of the paper is the construction of a class of mathematical 
examples of nonlinear dynamical groups that are both equivalent to a unitary 
one and satisfy the condition mentioned. The physical meaning of these 
examples is investigated assuming that the processes a dynamical group 
describes to be truly reversible. On the basis of this assumption they are ruled 
out as unphysical, since they require that the entropy of the system is to be 
constant in time. 

The considerations are developed in the Hilbert model, in the line of the 
results of Jauch (1968) and Piron (I 964), taking into account reformulations 
and contributions due to Varadarajan (1968) and Pool (1968). 
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2. Time Evolution: The Role o f  Superposition 

We associate to the physical system the lattice 5e(H) of all the closed sub- 
spaces of a separable complex Hilbert space H (dim H ~> 3) and the set M of 
all the a additive probability measures (states) on ~q°(H). According to the 
Piron theorem (Piron, 1964), every etement of £P(H) represents a class of 
equivalent yes-no experiments on the physical system. The elements of M 
represent the set of the preparing procedures pertaining to the physical system. 
By the G1eason theorem (Gleason, 1957) every state on 5q(H) has the form 
p(a) = Trpap where a C ~ ( H ) ,  pa is the orthogonal projection with range a 
and p ~ K(H), K(H) being the set of all positive, trace class operators with 
trace 1 (statistical operators) on H. 

In the following, K(H) and M will be identified. The number p (a) gives the 
probability of the outcome "yes" for a test of the class a when the system has 
been prepared with the procedures corresponding to the state p. The set of 
the pure states of K(H) (one-dimensional projections) and the set of the atoms 
of • (H) (rays of H)  are denoted by P(II) and A(H), respectively. 

The two sets Sl(a) = {p E K(H): p(a) = 1 ) and L(D) = {b E ~ (H): 
p(b) = IVp ~ D }  [a E ~ ( H ) , D  c K(H)] are the basic elements for the 
following considerations (Pool, 1968; Berzi and Zecca, 1974). 

Definition 1. A state 0 is said to be a superposition of the states in 
D C K(H) if L(p) D L(D) (Berzi and Zecca, 1974). 

The formulation of the superposition principle is equivalent (Berzi and 
Zecca, 1974) to the one originally proposed in Varadarajan (1968). It has the 
advantage of being applicable not only to the pure states, but also to the 
statistical operators of the system. Moreover, it gives a unified form of both 
the concept of statistical mixture and the concept of quantum superposition. 
It is an intrinsic formulation that adapts also to schemes more general than the 
Hitbert one (Varadarajan, 1968; Berzi and Zecca, 1974; Gorini and Zecca, 1975). 

The map D -~/)  = {P E K(H): L(p) D L(D)} is a closure operation (Birkhoff, 
1973) (closure under superposition) on the subsets of K(H) such that the 
family of the corresponding closed subsets of K(H) is {Sl(a): a E 5e(H)}. More- 
over Sl(vc~aa) = U~Sa(a,~) for every family {as} c ~7 (H), where v~aa is the least 
closed subspace of H containing the aa's. These assertions follow applying to 
the Hilbert model the results of Gorini and Zecca (1975). 

Definition 2. A dynamical group is a continuous one-parameter group 
of permutations of K(H): t -+ At, A t +s = AtAs, A0 = D such that 

(i) L(p) DL(D)=~L(Arp)DL(AtD), ~ / t E R  

(fi) t -> (Atp)(a) is a continuous map Vp E K(H), Va E .L~ (H) 

A dynamical group is assumed to describe the reversible dynamical processes 
(Schr6diflger picture) in the idealized situation of a strictly isolated quantum 
physical system. Condition (i) of Definition 2 has a simple operative meaning. 
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Suppose a yes-no experiment performed on the physical system that has been 
prepared in the state p gives the answer "yes"  with certainty whenever it has 
been found certainly true on every state of  D. Then this relation (superposition) 
is invariant under time translation. It is a weaker assumption than what is 
generally admi t t ed ]  because only the certainty value of the probability is 
required to be preserved. Condition (ii) is plausible on physical grounds. 

It is easily seen that the standard unitary time evolution is an example of  
dynamical group. Suppose indeed Trpa(utout +) = 1 V o E D  where t -+ b~ is 
a weakly continuous one-parameter group of unitary operators on H. By setting 
pc = g~ +paut there follows c E L(D) C L(p). Hence a E L( UtpUt+). 

In this connection the question arises whether a unitary time evolution 
represents the most general dynamical group or not. As will be seen, a dynamical 
group need not be linear even under special assumptions. 

3. A Class of  Dynamical Groups 

Definition 2 has at least two equivalent formulations. 

Lemma. Let t -+At be a dynamical group. Then condition (i) of  
Definition 2 is equivalent to every one of the following conditions: 

(i) AtD= AtD, Vt  ~ ~ ,  D C K(H) 

(ii) AtSl(a) = AtSI(a), V t E R,  Va E 5g (tI) 

Proof. Lemma 2.2 of  Gorini and Zecca (1975) still works in the Hilbert model 
and gives the equivalence of  (i) with (i) of  Definition 2. Trivially (i) ~ (ii) because 
Sl(a ) is closed Va E 5f (H) .  To prove (ii) ~ (i) notice first that VD C K ( H )  ] 
b ~ 5¢(H) such t h a t / )  = S~(b). Hence, by (ii) AtD= AtD D AiD. On the other 
hand alsoA_t = (At) -1 maps cl__oosed sets to closed sets. Hence fromA_t(AtD ) DD, 
by taking closure, one gets AtD D AtD. 

Using the spectral decomposition of a statistical operator one can easily 
verify the identity Sl(a ) = (pa} Va CA(H).  Condition (ii) of  the Lemma then 
enables one to show that A t is again a permutation when restricted to the set 
P(H) of the pure states. 

Given a dynamical group t -+ At, one can uniquely define a one-parameter 
group t-+ Z / of  order preserving permutations o f ~ a ( H )  by setting 

A_tSl(a ) = Sa(Zt A (a)) 

This is possible by means of  the result (ii) of  the I_emma and the fact that 
Sl(a) = Si(b) i.f.f, a = b [a, b ~ 5g(H)].  (Compare with Gorini and Zecca, 1975.) 
It is easily seen that Zt A preserves lattice join and meet for any family of  
elements of  5 f (H)  and also that  it gives a permutation when restricted to the 
set A(H) of atoms of  ~ ( H ) .  

The one-parameter group t -+ Z A is assumed to represent the Heisenberg 
picture induced by the SchrOd#zger picture t -+ A t. 

1 See, for instance, Jauch (1968). Compare also with Mackey (1963). 
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The dynamical groups t ->At and t ~ B  t are said to be equivalent i f Z  A = 
Zt B Vt ~ ~.  

In the following proposition, which is straightforward consequence of a 
standard mathematical result, a sufficient condition is given to have a dynamical 
group equivalent to a unitary one. 

Proposition. Let t -+ A t be a dynamical group satisfying the condition 

(iii) ~ alp i = ~ ~KQK ~ ~ a'gttPi = ~ 13KAtQK, {Pl}, {QK} C P(H), 
i K i K 

{a;}, {~K} c [0, 11 

with 

~ a i = ~ K =  1 
i K 

Then there exists a dynamical group t -+ Bt, such that 

(a) Btp = UtpUt + Vp ~ K(H),  Vt  E ~ ,  where t -+ Ut is a strongly 
continuous one-parameter group of unitary operators on H; 

(b) Z A =Zt  B V t E N .  

Proof. From the very definitions one gets the identity 

Atpa = p Z  A (a) Va E A ([t) 

Define now Bt: K(H) ~ K(H) by means of Btp = El~.cttP i for p = J~iaiPi E K(H) 
where the a;s are the (possibly repeated) eigenvalues of p and {P{ C P(H). 
The definition o f B  t is consistent with possible degeneracy of p because of 
assumption (iii). It follows that B t is a convex permutation of K(H). Using 
results of Kadison (1965) and taking into account that A t and B t act on the 
pure states in the same way, one gets BtP = UtPUt + Vp E K(H), where t -> Ut is 
a weakly continuous (Bargmann, 1954; Varadarajan, 1968, Vol. II, Chap. XI) 
[hence strongly (Yosida, 1971)] one-parameter group of unitary operators 
on H. (Antiunitary operators are not considered because of the group property.) 
Hence t -~ B t is a unitary dynamical group. The point (b) follows writing every 
a E~LP (H) as a union of atoms: a = via i and from 

s 6 z B _ ~ a ) )  = B t ~ i S l ( a i )  = ~:.~,s~(ai) = u . ~ t s l ( a 3  = S~(ZA-t(a) ) 

where a property of the closure under superposition and condition (i) of the 
Lemma have been used. 

The proposition implies that every dynamical group t -+ At  that satisfies 
condition (iii) is such that the corresponding t -+ B t verifies the equivalence of 
the Schr6dinger and Heisenberg picture, that is, (BtP)(a) = p(ZtB(a))Va @ .LP(H) 
Vt E R .  Hence the generator of the related t -+ Ut can be interpreted as the 

Hamiltonian of the system. 
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4. Nonlinear Examples and the Rote o f  Entropy 

The very definition of t ~ B t in the proposition suggests how to construct 
nonlinear examples of dynamical groups starting from a unitary one. Suppose, 
indeed, dim H < oo and consider any continuous family t -+ft of (nonadditive) 
positive, continuous, invertible functions defined on the positive real axis with 
the properties 

O) f t (xy)  = ft(x)~t(y) 

(ii) f t  + s (x) = f t(fs(x)), fit l(x) = f- t  (x) , 

Vx,  y > O, Vt,  s E ~ [e.g.,ft(x) = xet]. If  p = E;Tfi is the spectral decomposition 
of a statistical matrix, define At: K(H) -~ K(H) by means of 

(iii) Atp = Ei ft(7i) p. 
~K~(~K)  ' 

Taking into account the uniqueness of the spectral decomposition and the 
properties of the one-parameter group of functions, one can verify (with some 
calculations) that t -+ A t is a one-parameter group of bijections of  K(H) onto 
itself that satisfy condition (ii) of Definition 2 and condition (iii) of the 
Proposition. 

We recall that for the least element AL(D) = Ab~L(D)b [D C K(H)] of the 
dual principal (lattice) ideal L(D) it holds that AL(D) - [D], where [D] is the 
linear span of the ranges of  all the statistical matrices o E D (see Gorini and 
Zecca, 1975, sec. 4). With this notation, condition (i) of Definition 2 reads: 
[p] ~< [D] =~ [Atp] <<. [AtD] V t  E R [p E K ( I t ) , D  CK(H)] .  This condition 
is satisfied by the one-parameter group t -+ A t because [Atp ] = [p] Vp EK(H),  
V t E ~ .  

If t -~ Ut is a unitary dynamical group, then t -+ UtA  t is a nonlinear dynamical 
group equivalent to t -+ Ut. 

Now the problem arises of the physical interpretation of such examples. 
We suppose that the entropy S(t) at time t of a quantum system may be 

defined in terms of the statistical operator Pt of the system at time t: 

S(t) = -Tr(Pt logpt  ) 

The assumption that a dynamical group describes reversible physical 
processes implies the law of the constancy of entropy: 

(iv) dS(t) 
- 0 ,  V t  E R 

dt  

it is a trivial matter to check that this law is verified when the time evolution 
is given by a unitary dynamical group. 

It will now be seen that the same taw rules out as unphysical the given class 
of nonlinear examples. Consider, indeed, the state 

pt  = [Yt(~)P + ~ ( 1  - ~ ) O ] / ( f ~ ( 1  - ~ ) )  
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which, according to the previous construction, is the time evolved of  the 
statistical matrix p of  rank 2, whose spectral decomposition is p = aP  + (1 - a)Q. 
Imposing condition (iv) on the entropy calculated in the given state (for 
mathematical details see Kato, t966),  after assuming the existence o f  the 
derivative f~ with respect to t of t -~ft, one gets 

f ' t ( ~ ) f i ( 1  - ~ )  - f ~ ( ~ ) f ; ( 1  - ~ )  = o ,  v t E 

that is, f t(a) = g(a)ft(1 - a), where g(a) is independent of  r The property (i) of 
the one-parameter group t -+ f t  then implies ft [a/(1 - a)] = g(a), Vt E R , 
0 < o~ < 1. Hence ft(a) = f (a) ,  Vt e R ,  where f is a fixed function. Finally the 
group property with the invertibility o f f i m p l i e s f  = f2  = 1. 

Suppose now a one-parameter group of functions t "+ft exists such that the 
definition of  At in (iii) makes sense also when H is infinite dimensional. 
Proceeding as above one gets that also in this case f t  must be the identity function 
for every time t. 

5. Concluding Remarks  

In this note a possible characterization of  the reversible dynamical processes 
that the physical system undergoes has been proposed in terms of  general 
physical motivations based on Definition 2 and the law of entropy. In this 
connection some considerations arise: First of  all the mathematical problem is 
open of  determining necessary and sufficient conditions in order to have a 
dynamical group equivalent to a unitary one. Secondly, the question arises 
whether nonlinear dynamical groups exist that are equivalent to a unitary one 
and that verify the law of  the entropy. It would likewise be interesting to know 
whether there exist nonfinear examples compatible with the taw of  entropy but 
not equivalent to a unitary dynamical group. 

In any case, a possible indication for the construction of  nonlinear examples 
could be that of  proceeding as in (iii) of  the previous section, but modifying non- 
linearly not only the eigenvalues but also the eigenprojections of  the statistical 
operator. 
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